Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World Neurosurg ; 158: e64-e74, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34715371

RESUMO

OBJECTIVE: Brainstem safe entry zones (EZs) are gates to access the intrinsic pathology of the brainstem. We performed a quantitative analysis of the intrinsic surgical corridor limits of the most commonly used EZs and illustrated these through an inside perspective using 2-dimensional photographs, 3-dimensional photographs, and interactive 3-dimensional model reconstructions. METHODS: A total of 26 human brainstems (52 sides) with the cerebellum attached were prepared using the Klingler method and dissected. The safe working areas and distances for each EZ were defined according to the eloquent fiber tracts and nuclei. RESULTS: The largest safe distance corresponded to the depth for the lateral mesencephalic sulcus (4.8 mm), supratrigeminal (10 mm), epitrigeminal (13.2 mm), peritrigeminal (13.3 mm), lateral transpeduncular (22.3 mm), and infracollicular (4.6 mm); the rostrocaudal axis for the perioculomotor (11.7 mm), suprafacial (12.6 mm), and transolivary (12.8 mm); and the mediolateral axis for the supracollicular (9.1 mm) and infracollicular (7 mm) EZs. The safe working areas were 46.7 mm2 for the perioculomotor, 21.3 mm2 for the supracollicular, 14.8 mm2 for the infracollicular, 33.1 mm2 for the supratrigeminal, 34.3 mm2 for the suprafacial, 21.9 mm2 for the infrafacial, and 51.7 mm2 for the transolivary EZs. CONCLUSIONS: The largest safe distance in most EZs corresponded to the depth, followed by the rostrocaudal axis and, finally, the mediolateral axis. The transolivary had the largest safe working area of all EZs. The supracollicular EZ had the largest safe area to access the midbrain tectum and the suprafacial EZ for the floor of the fourth ventricle.


Assuntos
Tronco Encefálico , Mesencéfalo , Tronco Encefálico/patologia , Tronco Encefálico/cirurgia , Cerebelo , Humanos
2.
Clin Chim Acta ; 510: 625-632, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32791140

RESUMO

Although temporomandibular disorder (TMD) is the second most common musculoskeletal disorder in the general population, the disease is multifactorial and presents symptoms common to other conditions which misdiagnosis can lead to treatment failure. In this case-control study, we performed, for the first time, a high-resolution 1H-nuclear magnetic resonance spectroscopy metabolomic analysis of the saliva of 26 women with TMD of muscular origin (experimental group [EG]) at the beginning (EG-pre) and at the end (EG-post) of a conservative treatment, and of 27 normal women (control group [CG]) to identify a metabolic signature for TMD. One-way analysis of variance showed changes in the concentration of phenylacetate, dimethylamine, maltose, acetoin, and isovalerate. Partial least-square discriminant analysis showed that metabolite signals did not overlap in CG X EG-pre and EG-pre X EG-post, but overlapped in CG X EG-post. The area under the receiver operating characteristic curve was 1 in CG X EG-pre (95% CI, 1.000-1.000; p < 0.002), 0.993 in EG-pre X EG-post (95% CI, 0.963-1.000), and 0.832 in CG X EG-post (95% CI, 0.699-0.961). These results suggest that the metabolomic profiles of women with and without TMD differ, while after treatment there is a lower distinction and slight tendency towards overlapping between CG and EG-post compared to pre treatment. We also found that phenylacetate, dimethylamine, maltose, acetoin, and isovalerate are potential biomarkers for TMD of muscular origin.


Assuntos
Transtornos da Articulação Temporomandibular , Estudos de Casos e Controles , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Metabolômica , Projetos Piloto , Espectroscopia de Prótons por Ressonância Magnética , Transtornos da Articulação Temporomandibular/diagnóstico
3.
Anat Res Int ; 2014: 732720, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24527214

RESUMO

Objective. To characterize morphologically and ultrastructurally using light microscopy, the scanning electron microscopy and transmission electron microscopy the intima synovial of the temporomandibular joint (TMJ) of human fetuses between the 10th and the 38th week of development. Materials and Methods. The TMJ was dissected bilaterally in 37 human fetuses belonging to the Institute of Embryology of the University Complutense of Madrid and of the Federal University of São Paulo. Results. The outcome by light microscopy showed the morphology of the TMJ and that the formation of inferior joint cavity precedes the superior joint cavity and the presence of blood vessels in the synovial. Conclusion. By scanning and transmission electron microscopy we observed the presence of two well-defined cell types in the intima layer of synovial of the TMJ of human fetuses, macrophage-like type A cell and fibroblast-like type B cell, and the presence of the a third cell type, defined by the name of intermediate lining cell in the intima layer of the synovial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...